Isometrical embeddings of ultrametric spaces into non-archimedean valued fields
نویسندگان
چکیده
منابع مشابه
Fixed Point Theorems for Single Valued Mappings Satisfying the Ordered non-Expansive Conditions on Ultrametric and Non-Archimedean Normed Spaces
In this paper, some fixed point theorems for nonexpansive mappings in partially ordered spherically complete ultrametric spaces are proved. In addition, we investigate the existence of fixed points for nonexpansive mappings in partially ordered non-Archimedean normed spaces. Finally, we give some examples to discuss the assumptions and support our results.
متن کاملFUZZY HYPERVECTOR SPACES OVER VALUED FIELDS
In this note we first redefine the notion of a fuzzy hypervectorspace (see [1]) and then introduce some further concepts of fuzzy hypervectorspaces, such as fuzzy convex and balance fuzzy subsets in fuzzy hypervectorspaces over valued fields. Finally, we briefly discuss on the convex (balanced)hull of a given fuzzy set of a hypervector space.
متن کاملAn analogue of Hilbert’s tenth problem for fields of meromorphic functions over non-Archimedean valued fields
Let K be a complete and algebraically closed valued field of characteristic 0. We prove that the set of rational integers is positive existentially definable in the field M of meromorphic functions on K in the language Lz of rings augmented by a constant symbol for the independent variable z and by a symbol for the unary relation “the function x takes the value 0 at 0”. Consequently, we prove t...
متن کاملAn analogue of Hilbert’s 10th problem for fields of meromorphic functions over non-Archimedean valued fields
Let K be a complete and algebraically closed valued field of characteristic 0. We prove that the set of rational integers is positive existentially definable in the field M of meromorphic functions on K in the language L z of rings augmented by a constant symbol for the independent variable z and by a symbol for the unary relation ‘‘the function x takes the value 0 at 0’’. Consequently, we prov...
متن کاملPictures of Ultrametric Spaces, the p-Adic Numbers, and Valued Fields
1. INTRODUCTION. When studying a metric space, it is valuable to have a mental picture that displays distance accurately. When the space is Z, Q, or R, we usually form such a picture by imagining points on the " number line ". When the space is X = Z 2 , Q 2 , R 2 , or C we use a planar picture in which nonempty discs (sets of the form {x ∈ X : d(x, b) ≤ γ } or {x ∈ X : d(x, b) < β}, with metri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae (Proceedings)
سال: 1984
ISSN: 1385-7258
DOI: 10.1016/1385-7258(84)90056-8